.. _sphx_glr_ex_21-tecbuckling.rst: .. _tech_demo_21: Buckling and post-buckling analysis of a ring-stiffened cylinder using nonlinear stabilization ============================================================================================== This examples shows how to use PyMAPDL to import an existing FE model and to perform a7 nonlinear buckling and post-buckling analysis using nonlinear stabilization. The problem uses a stiffened cylinder subjected to uniform external pressure to show how to find the nonlinear buckling loads, achieve convergence at the post-buckling stage, and interpret the results. This example is inspired from the model and analysis defined in Chapter 21 of the Mechanical APDL Technology Showcase Manual. Setting up model ---------------- The original FE model is given in the Ansys Mechanical APDL Technology Showcase Manual. The .cdb contains a FE model of a ring-stiffened cylinder. A circular cylinder made of bare 2024-T3 aluminum alloy is stiffened inside with five Z-section rings. Its ends are closed with thick aluminum bulkheads. A riveted L section exists between the top plate and the top ring and the bottom plate and bottom ring. The cylinder is subjected to a differential external pressure. The pressure causes a local buckling phenomenon characterized by buckling of the skin between stiffening rings, leading eventually to collapse. The finite element model of the ring stiffened cylinder is meshed with SHELL281 elements with an element size of 10 mm. The fine mesh is required for buckling analysis, and a full 360-degree model is necessary because the deformation is no longer axisymmetric after buckling occurs. All shell elements have uniform thickness. Five sections are created in the model with no offsets, so the shell sections are offset to the midplane by default. Starting MAPDL as a service and importing an external model ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. code-block:: python from ansys.mapdl.core import launch_mapdl from ansys.mapdl.core.examples.downloads import download_tech_demo_data # define geometric parameters bs = 95.3 # Ring spacing (mm) ts = 1.034 # Skin thickness (mm) tw = 0.843 # Ring thickness (mm) r = 344 * ts # Radius of cylinder (mm) L = 431.8 + 2 * (19 - 9.5) # Length of cylinder (mm) pext = 0.24 # Differential external pressure (MPa) # start MAPDL as a service mapdl = launch_mapdl() print(mapdl) mapdl.filname("buckling") # change filename # mapdl.nerr(nmerr=200, nmabt=10000, abort=-1, ifkey=0, num=0) # enter preprocessor mapdl.prep7() # define material properties for 2024-T3 Alluminum alloy EX = 73000 # Young's Modulus (MPA) ET = 73 # Tangent modulus mapdl.mp("ex", 1, EX) # Young's Modulus (MPA) mapdl.mp("prxy", 1, 0.33) # Poisson's ratio EP = EX * ET / (EX - ET) mapdl.tb("biso", 1) mapdl.tbdata(1, 268.9, EP) # create material plot mapdl.show("png") mapdl.tbplot("biso", 1) mapdl.show("close") # define shell elements and their sections mapdl.et(1, 181) # cylinder mapdl.sectype(1, "shell") mapdl.secdata(ts, 1) # L mapdl.sectype(2, "shell") mapdl.secdata(ts + 1.64, 1) # Z shaped ring stiffener mapdl.sectype(3, "shell") mapdl.secdata(tw, 1) # Plate at z=0 with thickness=25 mm mapdl.sectype(4, "shell") mapdl.secdata(25, 1) # Plate at z=L with thickness=25 mm mapdl.sectype(5, "shell") mapdl.secdata(25, 1) # read model of stiffened cylinder # download the cdb file ring_mesh_file = download_tech_demo_data( "td-21", "ring_stiffened_cylinder_mesh_file.cdb" ) # read in cdb mapdl.cdread("db", ring_mesh_file) mapdl.allsel() mapdl.eplot(background="w") mapdl.cmsel("all") .. image-sg:: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_000.png :alt: 21 example technology showcase buckling :srcset: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_000.png :class: sphx-glr-single-img .. image-sg:: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_001.png :alt: 21 example technology showcase buckling :srcset: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none Product: Ansys Mechanical Enterprise MAPDL Version: 23.1 ansys.mapdl Version: 0.65.dev0 ALSO SELECT ALL COMPONENTS Define static prestress analysis ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Displacement boundary conditions are defined to prevent the six rigid body motions. A total of six displacements are therefore applied to three nodes located on the top plate at 0, 90, and 270 degrees; the nodes are restricted so that all rigid translations and rotations are not possible for the cylinder. Loading consists of a uniformly distributed external differential pressure: :math:`P_{ext} = 0.24 MPa` .. code-block:: python print("Begin static prestress analysis") mapdl.csys(1) # activate cylindrical coordinate system # Define pressure on plate at z=0 mapdl.nsel("s", "loc", "z", 0) mapdl.esln("s", 1) mapdl.sfe("all", 2, "pres", 1, pext) mapdl.allsel() # Define pressure on the rim of plate at z=0 mapdl.nsel("s", "loc", "z", 0) mapdl.nsel("r", "loc", "x", r - ts / 2, 760 / 2) mapdl.esln("s", 1) mapdl.sfe("all", 1, "pres", 1, pext) mapdl.allsel() # Define pressure on plate at z=L mapdl.nsel("s", "loc", "z", L) mapdl.esln("s", 1) mapdl.sfe("all", 2, "pres", 1, pext) mapdl.allsel() # Define pressure on the rim of plate at z=L mapdl.nsel("s", "loc", "z", L) mapdl.nsel("r", "loc", "x", r - ts / 2, 760 / 2) mapdl.esln("s", 1) mapdl.sfe("all", 1, "pres", 1, pext) mapdl.allsel() # Define pressure on cylinder mapdl.nsel("s", "loc", "x", r - ts / 2) mapdl.esln("s", 1) mapdl.sfe("all", 2, "pres", 1, pext) mapdl.allsel() # Define displacement BSs to avoid rigid body motion mapdl.csys(0) # activate cartesian coordinate system mapdl.nsel("s", "loc", "x", r - ts / 2) mapdl.nsel("r", "loc", "y", 0) mapdl.nsel("r", "loc", "z", 0) mapdl.d("all", "ux", 0) mapdl.d("all", "uy", 0) mapdl.d("all", "uz", 0) mapdl.allsel() # mapdl.nsel("s", "loc", "x", 0) mapdl.nsel("r", "loc", "y", r - ts / 2) mapdl.nsel("r", "loc", "z", 0) mapdl.d("all", "uz", 0) mapdl.allsel() # mapdl.nsel("s", "loc", "x", 0) mapdl.nsel("r", "loc", "y", -(r - ts / 2)) mapdl.nsel("r", "loc", "z", 0) mapdl.d("all", "uy", 0) mapdl.d("all", "uz", 0) mapdl.allsel() # # Print DOF constraints print(mapdl.dlist()) # Solve static prestress analysis mapdl.slashsolu() mapdl.pstres("on") mapdl.antype("STATIC") output = mapdl.solve() print(output) # Plot total deformation mapdl.post1() mapdl.set("last") mapdl.post_processing.plot_nodal_displacement("NORM", smooth_shading=True) print("End static prestress analysis") .. image-sg:: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_002.png :alt: 21 example technology showcase buckling :srcset: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_002.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none Begin static prestress analysis LIST CONSTRAINTS FOR SELECTED NODES 1 TO 85474 BY 1 CURRENTLY SELECTED DOF SET= UX UY UZ ROTX ROTY ROTZ *****MAPDL VERIFICATION RUN ONLY***** DO NOT USE RESULTS FOR PRODUCTION NODE LABEL REAL IMAG 1 UX 0.00000000 0.00000000 1 UY 0.00000000 0.00000000 1 UZ 0.00000000 0.00000000 2 UZ 0.00000000 0.00000000 902 UY 0.00000000 0.00000000 902 UZ 0.00000000 0.00000000 ***** MAPDL SOLVE COMMAND ***** *** NOTE *** CP = 0.000 TIME= 00:00:00 There is no title defined for this analysis. *** WARNING *** CP = 0.000 TIME= 00:00:00 Section ID set 2 (and possibly others), with only 1 layer and 3 integration points, is associated with material plasticity. The number of integration points will be changed to 5 for improved accuracy. *** NOTE *** CP = 0.000 TIME= 00:00:00 The model data was checked and warning messages were found. Please review output or errors file ( ) for these warning messages. *** SELECTION OF ELEMENT TECHNOLOGIES FOR APPLICABLE ELEMENTS *** ---GIVE SUGGESTIONS ONLY--- ELEMENT TYPE 1 IS SHELL281. IT IS ASSOCIATED WITH ELASTOPLASTIC MATERIALS ONLY. KEYOPT(8)=2 IS SUGGESTED. *****MAPDL VERIFICATION RUN ONLY***** DO NOT USE RESULTS FOR PRODUCTION S O L U T I O N O P T I O N S PROBLEM DIMENSIONALITY. . . . . . . . . . . . .3-D DEGREES OF FREEDOM. . . . . . UX UY UZ ROTX ROTY ROTZ ANALYSIS TYPE . . . . . . . . . . . . . . . . .STATIC (STEADY-STATE) PRESTRESS EFFECTS CALCULATED. . . . . . . . . .YES PLASTIC MATERIAL PROPERTIES INCLUDED. . . . . .YES NEWTON-RAPHSON OPTION . . . . . . . . . . . . .PROGRAM CHOSEN GLOBALLY ASSEMBLED MATRIX . . . . . . . . . . .SYMMETRIC *** NOTE *** CP = 0.000 TIME= 00:00:00 Present time 0 is less than or equal to the previous time. Time will default to 1. *** NOTE *** CP = 0.000 TIME= 00:00:00 This nonlinear analysis defaults to using the full Newton-Raphson solution procedure. This can be modified using the NROPT command. *** NOTE *** CP = 0.000 TIME= 00:00:00 The conditions for direct assembly have been met. No .emat or .erot files will be produced. *** WARNING *** CP = 0.000 TIME= 00:00:00 The program chosen initial timestep/load-factor is arbitrary. It is necessary for the user to supply a suitable initial timestep/load-factor through the NSUB or DELTIM command for convergence and overall efficiency. D I S T R I B U T E D D O M A I N D E C O M P O S E R ...Number of elements: 26796 ...Number of nodes: 73662 ...Decompose to 0 CPU domains ...Element load balance ratio = 0.000 L O A D S T E P O P T I O N S LOAD STEP NUMBER. . . . . . . . . . . . . . . . 1 TIME AT END OF THE LOAD STEP. . . . . . . . . . 1.0000 AUTOMATIC TIME STEPPING . . . . . . . . . . . . ON INITIAL NUMBER OF SUBSTEPS . . . . . . . . . 1 MAXIMUM NUMBER OF SUBSTEPS . . . . . . . . . 1000 MINIMUM NUMBER OF SUBSTEPS . . . . . . . . . 1 START WITH TIME STEP FROM PREVIOUS SUBSTEP . YES MAXIMUM NUMBER OF EQUILIBRIUM ITERATIONS. . . . 15 STEP CHANGE BOUNDARY CONDITIONS . . . . . . . . NO TERMINATE ANALYSIS IF NOT CONVERGED . . . . . .YES (EXIT) CONVERGENCE CONTROLS. . . . . . . . . . . . . .USE DEFAULTS COPY INTEGRATION POINT VALUES TO NODE . . . . .YES, FOR ELEMENTS WITH ACTIVE MAT. NONLINEARITIES PRINT OUTPUT CONTROLS . . . . . . . . . . . . .NO PRINTOUT DATABASE OUTPUT CONTROLS. . . . . . . . . . . .ALL DATA WRITTEN FOR THE LAST SUBSTEP *** NOTE *** CP = 0.000 TIME= 00:00:00 Predictor is ON by default for structural elements with rotational degrees of freedom. Use the PRED,OFF command to turn the predictor OFF if it adversely affects the convergence. Range of element maximum matrix coefficients in global coordinates Maximum = 489978589 at element 0. Minimum = 165335.668 at element 0. *** ELEMENT MATRIX FORMULATION TIMES TYPE NUMBER ENAME TOTAL CP AVE CP 1 26796 SHELL281 0.000 0.000000 Time at end of element matrix formulation CP = 0. ALL CURRENT MAPDL DATA WRITTEN TO FILE NAME= FOR POSSIBLE RESUME FROM THIS POINT FORCE CONVERGENCE VALUE = 3478. CRITERION= 17.39 MOMENT CONVERGENCE VALUE = 0.000 CRITERION= 15.96 DISTRIBUTED SPARSE MATRIX DIRECT SOLVER. Number of equations = 441966, Maximum wavefront = 0 Memory available (MB) = 0.0 , Memory required (MB) = 0.0 Distributed sparse solver maximum pivot= 0 at node 0 . Distributed sparse solver minimum pivot= 0 at node 0 . Distributed sparse solver minimum pivot in absolute value= 0 at node 0 . DISP CONVERGENCE VALUE = 2.213 CRITERION= 0.1106 EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -2.213 FORCE CONVERGENCE VALUE = 0.5808E-05 CRITERION= 17.39 <<< CONVERGED MOMENT CONVERGENCE VALUE = 0.2147E-05 CRITERION= 15.96 <<< CONVERGED *** WARNING *** CP = 0.000 TIME= 00:00:00 A reference moment value times the tolerance is used by the Newton-Raphson method for checking convergence. The calculated reference MOMENT CONVERGENCE VALUE = 0 is less than a threshold. This threshold is internally calculated. You can overwrite it by specifying MINREF on the CNVTOL command. Check results carefully. DISP CONVERGENCE VALUE = 0.7695E-09 CRITERION= 0.1106 <<< CONVERGED EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC = 0.7695E-09 >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION 2 *** ELEMENT RESULT CALCULATION TIMES TYPE NUMBER ENAME TOTAL CP AVE CP 1 26796 SHELL281 0.000 0.000000 *** NODAL LOAD CALCULATION TIMES TYPE NUMBER ENAME TOTAL CP AVE CP 1 26796 SHELL281 0.000 0.000000 *** LOAD STEP 1 SUBSTEP 1 COMPLETED. CUM ITER = 2 *** TIME = 1.00000 TIME INC = 1.00000 End static prestress analysis Run linear buckling analysis ---------------------------- This preliminary analysis predicts the theoretical buckling pressure of the ideal linear elastic structure (perfect cylinder) and the buckled mode shapes used in the next step to generate the imperfections. It is also an efficient way to check the completeness and correctness of modeling. To run the linear buckling analysis, a static solution with prestress effects must be obtained, followed by the eigenvalue buckling solution using the Block Lanczos method and mode expansion. .. code-block:: python print("Begin linear buckling analysis") # Define and solve linear buckling analysis mapdl.slashsolu() mapdl.outres("all", "all") mapdl.antype("BUCKLE") mapdl.bucopt("lanb", "10") mapdl.mxpand(10) output = mapdl.solve() print(output) # Plot total deformation of first and 10th mode mapdl.post1() mapdl.set(1, 1) mapdl.post_processing.plot_nodal_displacement("NORM", smooth_shading=True) mapdl.set(1, 10) mapdl.post_processing.plot_nodal_displacement("NORM", smooth_shading=True) print("End linear buckling analysis") .. rst-class:: sphx-glr-horizontal * .. image-sg:: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_003.png :alt: 21 example technology showcase buckling :srcset: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_003.png :class: sphx-glr-multi-img * .. image-sg:: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_004.png :alt: 21 example technology showcase buckling :srcset: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_004.png :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out .. code-block:: none Begin linear buckling analysis ***** MAPDL SOLVE COMMAND ***** *** NOTE *** CP = 0.000 TIME= 00:00:00 There is no title defined for this analysis. *** SELECTION OF ELEMENT TECHNOLOGIES FOR APPLICABLE ELEMENTS *** ---GIVE SUGGESTIONS ONLY--- ELEMENT TYPE 1 IS SHELL281. IT IS ASSOCIATED WITH ELASTOPLASTIC MATERIALS ONLY. KEYOPT(8)=2 IS SUGGESTED. *****MAPDL VERIFICATION RUN ONLY***** DO NOT USE RESULTS FOR PRODUCTION S O L U T I O N O P T I O N S PROBLEM DIMENSIONALITY. . . . . . . . . . . . .3-D DEGREES OF FREEDOM. . . . . . UX UY UZ ROTX ROTY ROTZ ANALYSIS TYPE . . . . . . . . . . . . . . . . .BUCKLING EXTRACTION METHOD. . . . . . . . . . . . . .BLOCK LANCZOS PRESTRESS EFFECTS INCLUDED IF AVAILABLE . . . .YES GLOBALLY ASSEMBLED MATRIX . . . . . . . . . . .SYMMETRIC *** NOTE *** CP = 0.000 TIME= 00:00:00 The conditions for direct assembly have been met. No .emat or .erot files will be produced. L O A D S T E P O P T I O N S LOAD STEP NUMBER. . . . . . . . . . . . . . . . 1 PRINT OUTPUT CONTROLS . . . . . . . . . . . . .NO PRINTOUT DATABASE OUTPUT CONTROLS ITEM FREQUENCY COMPONENT ALL ALL BLOCK LANCZOS CALCULATION OF UP TO 10 EIGENVECTORS. NUMBER OF EQUATIONS = 441966 MAXIMUM WAVEFRONT = 0 MAXIMUM MODES STORED = 10 MINIMUM EIGENVALUE = -0.10000E+31 MAXIMUM EIGENVALUE = 0.10000E+31 CENTER EIGENVALUE = 0.00000E+00 *****MAPDL VERIFICATION RUN ONLY***** DO NOT USE RESULTS FOR PRODUCTION ***** EIGENVALUES (LOAD MULTIPLIERS FOR BUCKLING) ***** *** FROM BLOCK LANCZOS ITERATION *** SHAPE NUMBER LOAD MULTIPLIER 1 0.62493510 2 0.62493510 3 0.62746216 4 0.62748425 5 0.63023610 6 0.63025918 7 0.63985985 8 0.63985995 9 0.64191573 10 0.64191576 End linear buckling analysis Generate imperfections ---------------------- If a structure is perfectly symmetric, nonsymmetric buckling does not occur numerically, and a nonlinear buckling analysis fails because nonsymmetric buckling responses cannot be triggered. In this problem, the geometry, elements, and pressure are all axisymmetric. It is not possible, therefore, to simulate nonaxisymmetric buckling with the initial model. To overcome this problem, small geometric imperfections (similar to those caused by manufacturing a real structure) must be introduced to trigger the buckling responses. Because the radius of the cylinder is 355.69 mm and the maximum displacement of a mode shape is 1 mm, a factor of 0.1 is applied when updating the geometry with mode shapes. The factor assumes the manufacturing tolerance of the radius to be on the order of 0.1. .. code-block:: python print("Begin adding imperfections") mapdl.finish() mapdl.prep7() for i in range(1, 11): mapdl.upgeom(0.1, 1, i, "buckling", "rst") # Add imperfections as a tenth of each # mode shape mapdl.finish() print("Finish adding imperfections") .. rst-class:: sphx-glr-script-out .. code-block:: none Begin adding imperfections Finish adding imperfections Run nonlinear static analysis on geometry with imperfections ------------------------------------------------------------ The nonlinear buckling analysis is a static analysis performed after adding imperfections with large deflection active (NLGEOM,ON), extended to a point where the stiffened cylinder can reach its limit load. To perform the analysis, the load must be allowed to increase using very small time increments so that the expected critical buckling load can be predicted accurately. Note - as this is a buckling analysis, divergence is expected. .. code-block:: python print("Begin nonlinear static analysis on imperfect geometry") mapdl.slashsolu() mapdl.antype("STATIC") mapdl.nlgeom("on") mapdl.pred("on") mapdl.time(1) mapdl.nsubst(100, 10000, 10) mapdl.rescontrol("define", "all", 1) mapdl.outres("all", "all") mapdl.ncnv(2) # Do not terminate the program execution if the solution diverges mapdl.allow_ignore = True # in order for PyMAPDL to not raise an error output = mapdl.solve() print(output) mapdl.finish() print("End nonlinear static analysis on imperfect geometry") .. rst-class:: sphx-glr-script-out .. code-block:: none Begin nonlinear static analysis on imperfect geometry ***** MAPDL SOLVE COMMAND ***** *** NOTE *** CP = 0.000 TIME= 00:00:00 There is no title defined for this analysis. *** SELECTION OF ELEMENT TECHNOLOGIES FOR APPLICABLE ELEMENTS *** ---GIVE SUGGESTIONS ONLY--- ELEMENT TYPE 1 IS SHELL281. IT IS ASSOCIATED WITH ELASTOPLASTIC MATERIALS ONLY. KEYOPT(8)=2 IS SUGGESTED. *****MAPDL VERIFICATION RUN ONLY***** DO NOT USE RESULTS FOR PRODUCTION S O L U T I O N O P T I O N S PROBLEM DIMENSIONALITY. . . . . . . . . . . . .3-D DEGREES OF FREEDOM. . . . . . UX UY UZ ROTX ROTY ROTZ ANALYSIS TYPE . . . . . . . . . . . . . . . . .STATIC (STEADY-STATE) NONLINEAR GEOMETRIC EFFECTS . . . . . . . . . .ON PLASTIC MATERIAL PROPERTIES INCLUDED. . . . . .YES NEWTON-RAPHSON OPTION . . . . . . . . . . . . .PROGRAM CHOSEN GLOBALLY ASSEMBLED MATRIX . . . . . . . . . . .SYMMETRIC *** NOTE *** CP = 0.000 TIME= 00:00:00 This nonlinear analysis defaults to using the full Newton-Raphson solution procedure. This can be modified using the NROPT command. *** NOTE *** CP = 0.000 TIME= 00:00:00 The conditions for direct assembly have been met. No .emat or .erot files will be produced. D I S T R I B U T E D D O M A I N D E C O M P O S E R ...Number of elements: 26796 ...Number of nodes: 73662 ...Decompose to 0 CPU domains ...Element load balance ratio = 0.000 L O A D S T E P O P T I O N S LOAD STEP NUMBER. . . . . . . . . . . . . . . . 1 TIME AT END OF THE LOAD STEP. . . . . . . . . . 1.0000 AUTOMATIC TIME STEPPING . . . . . . . . . . . . ON INITIAL NUMBER OF SUBSTEPS . . . . . . . . . 100 MAXIMUM NUMBER OF SUBSTEPS . . . . . . . . . 10000 MINIMUM NUMBER OF SUBSTEPS . . . . . . . . . 10 MAXIMUM NUMBER OF EQUILIBRIUM ITERATIONS. . . . 15 STEP CHANGE BOUNDARY CONDITIONS . . . . . . . . NO STRESS-STIFFENING . . . . . . . . . . . . . . . ON PREDICTOR USAGE . . . . . . . . . . . . . . . .ON (AFTER FIRST SUBSTEP) TERMINATE ANALYSIS IF NOT CONVERGED . . . . . .YES (REMAIN) CONVERGENCE CONTROLS. . . . . . . . . . . . . .USE DEFAULTS COPY INTEGRATION POINT VALUES TO NODE . . . . .YES, FOR ELEMENTS WITH ACTIVE MAT. NONLINEARITIES PRINT OUTPUT CONTROLS . . . . . . . . . . . . .NO PRINTOUT DATABASE OUTPUT CONTROLS ITEM FREQUENCY COMPONENT ALL ALL Range of element maximum matrix coefficients in global coordinates Maximum = 489978592 at element 0. Minimum = 165328.012 at element 0. *** ELEMENT MATRIX FORMULATION TIMES TYPE NUMBER ENAME TOTAL CP AVE CP 1 26796 SHELL281 0.000 0.000000 Time at end of element matrix formulation CP = 0. ALL CURRENT MAPDL DATA WRITTEN TO FILE NAME= FOR POSSIBLE RESUME FROM THIS POINT FORCE CONVERGENCE VALUE = 34.78 CRITERION= 0.1739 MOMENT CONVERGENCE VALUE = 0.1824E-05 CRITERION= 0.1596 DISTRIBUTED SPARSE MATRIX DIRECT SOLVER. Number of equations = 441966, Maximum wavefront = 0 Memory available (MB) = 0.0 , Memory required (MB) = 0.0 Distributed sparse solver maximum pivot= 0 at node 0 . Distributed sparse solver minimum pivot= 0 at node 0 . Distributed sparse solver minimum pivot in absolute value= 0 at node 0 . DISP CONVERGENCE VALUE = 0.2221E-01 CRITERION= 0.1110E-02 EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.2221E-01 FORCE CONVERGENCE VALUE = 1.654 CRITERION= 0.1739 MOMENT CONVERGENCE VALUE = 0.2307 CRITERION= 0.1596 DISP CONVERGENCE VALUE = 0.2244E-03 CRITERION= 0.1111E-02 <<< CONVERGED EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.2244E-03 FORCE CONVERGENCE VALUE = 0.2717E-03 CRITERION= 0.1739 <<< CONVERGED MOMENT CONVERGENCE VALUE = 0.1623E-03 CRITERION= 0.1596 <<< CONVERGED *** WARNING *** CP = 0.000 TIME= 00:00:00 A reference moment value times the tolerance is used by the Newton-Raphson method for checking convergence. The calculated reference MOMENT CONVERGENCE VALUE = 0 is less than a threshold. This threshold is internally calculated. You can overwrite it by specifying MINREF on the CNVTOL command. Check results carefully. >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION 2 *** ELEMENT RESULT CALCULATION TIMES TYPE NUMBER ENAME TOTAL CP AVE CP 1 26796 SHELL281 0.000 0.000000 *** NODAL LOAD CALCULATION TIMES TYPE NUMBER ENAME TOTAL CP AVE CP 1 26796 SHELL281 0.000 0.000000 *** LOAD STEP 1 SUBSTEP 1 COMPLETED. CUM ITER = 2 *** TIME = 0.100000E-01 TIME INC = 0.100000E-01 *** AUTO STEP TIME: NEXT TIME INC = 0.10000E-01 UNCHANGED FORCE CONVERGENCE VALUE = 3.342 CRITERION= 0.3478 MOMENT CONVERGENCE VALUE = 0.4703 CRITERION= 0.3191 DISP CONVERGENCE VALUE = 0.4679E-03 CRITERION= 0.1111E-02 <<< CONVERGED EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.4679E-03 FORCE CONVERGENCE VALUE = 0.1163E-02 CRITERION= 0.3478 <<< CONVERGED MOMENT CONVERGENCE VALUE = 0.2879E-03 CRITERION= 0.3191 <<< CONVERGED >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION 1 *** LOAD STEP 1 SUBSTEP 2 COMPLETED. CUM ITER = 3 *** TIME = 0.200000E-01 TIME INC = 0.100000E-01 *** AUTO TIME STEP: NEXT TIME INC = 0.15000E-01 INCREASED (FACTOR = 1.5000) FORCE CONVERGENCE VALUE = 6.409 CRITERION= 0.6086 MOMENT CONVERGENCE VALUE = 0.9124 CRITERION= 0.5585 DISP CONVERGENCE VALUE = 0.9445E-03 CRITERION= 0.1667E-02 <<< CONVERGED EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.9445E-03 FORCE CONVERGENCE VALUE = 0.4674E-02 CRITERION= 0.6086 <<< CONVERGED MOMENT CONVERGENCE VALUE = 0.6922E-03 CRITERION= 0.5585 <<< CONVERGED >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION 1 *** LOAD STEP 1 SUBSTEP 3 COMPLETED. CUM ITER = 4 *** TIME = 0.350000E-01 TIME INC = 0.150000E-01 *** AUTO TIME STEP: NEXT TIME INC = 0.22500E-01 INCREASED (FACTOR = 1.5000) FORCE CONVERGENCE VALUE = 14.89 CRITERION= 0.9998 MOMENT CONVERGENCE VALUE = 2.142 CRITERION= 0.9175 DISP CONVERGENCE VALUE = 0.2356E-02 CRITERION= 0.2502E-02 <<< CONVERGED EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.2356E-02 FORCE CONVERGENCE VALUE = 0.2851E-01 CRITERION= 0.9998 <<< CONVERGED MOMENT CONVERGENCE VALUE = 0.3006E-02 CRITERION= 0.9175 <<< CONVERGED >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION 1 *** LOAD STEP 1 SUBSTEP 4 COMPLETED. CUM ITER = 5 *** TIME = 0.575000E-01 TIME INC = 0.225000E-01 *** AUTO TIME STEP: NEXT TIME INC = 0.33750E-01 INCREASED (FACTOR = 1.5000) FORCE CONVERGENCE VALUE = 35.48 CRITERION= 1.587 MOMENT CONVERGENCE VALUE = 5.147 CRITERION= 1.456 DISP CONVERGENCE VALUE = 0.6229E-02 CRITERION= 0.3757E-02 EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.6229E-02 FORCE CONVERGENCE VALUE = 0.1940 CRITERION= 1.587 <<< CONVERGED MOMENT CONVERGENCE VALUE = 0.1811E-01 CRITERION= 1.456 <<< CONVERGED DISP CONVERGENCE VALUE = 0.2802E-04 CRITERION= 0.3757E-02 <<< CONVERGED EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC = -0.2802E-04 >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION 2 *** LOAD STEP 1 SUBSTEP 5 COMPLETED. CUM ITER = 7 *** TIME = 0.912500E-01 TIME INC = 0.337500E-01 *** AUTO TIME STEP: NEXT TIME INC = 0.50625E-01 INCREASED (FACTOR = 1.5000) FORCE CONVERGENCE VALUE = 88.92 CRITERION= 2.467 MOMENT CONVERGENCE VALUE = 12.81 CRITERION= 2.264 DISP CONVERGENCE VALUE = 0.1802E-01 CRITERION= 0.5646E-02 EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.1802E-01 FORCE CONVERGENCE VALUE = 1.576 CRITERION= 2.467 <<< CONVERGED MOMENT CONVERGENCE VALUE = 0.1360 CRITERION= 2.264 <<< CONVERGED DISP CONVERGENCE VALUE = 0.2509E-03 CRITERION= 0.5646E-02 <<< CONVERGED EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC = -0.2509E-03 >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION 2 *** LOAD STEP 1 SUBSTEP 6 COMPLETED. CUM ITER = 9 *** TIME = 0.141875 TIME INC = 0.506250E-01 *** AUTO TIME STEP: NEXT TIME INC = 0.75938E-01 INCREASED (FACTOR = 1.5000) FORCE CONVERGENCE VALUE = 252.2 CRITERION= 3.787 MOMENT CONVERGENCE VALUE = 33.74 CRITERION= 3.475 DISP CONVERGENCE VALUE = 0.6000E-01 CRITERION= 0.1142E-01 EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.6000E-01 FORCE CONVERGENCE VALUE = 17.33 CRITERION= 3.787 MOMENT CONVERGENCE VALUE = 1.320 CRITERION= 3.475 <<< CONVERGED DISP CONVERGENCE VALUE = 0.2965E-02 CRITERION= 0.1157E-01 <<< CONVERGED EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.2965E-02 FORCE CONVERGENCE VALUE = 0.3051E-01 CRITERION= 3.787 <<< CONVERGED MOMENT CONVERGENCE VALUE = 0.9014E-02 CRITERION= 3.475 <<< CONVERGED >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION 2 *** LOAD STEP 1 SUBSTEP 7 COMPLETED. CUM ITER = 11 *** TIME = 0.217813 TIME INC = 0.759375E-01 *** AUTO TIME STEP: NEXT TIME INC = 0.10000 INCREASED (FACTOR = 1.3169) FORCE CONVERGENCE VALUE = 781.3 CRITERION= 5.525 MOMENT CONVERGENCE VALUE = 79.26 CRITERION= 5.071 DISP CONVERGENCE VALUE = 0.1687 CRITERION= 0.2356E-01 EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.1687 FORCE CONVERGENCE VALUE = 177.9 CRITERION= 5.526 MOMENT CONVERGENCE VALUE = 11.17 CRITERION= 5.071 DISP CONVERGENCE VALUE = 0.2494E-01 CRITERION= 0.2481E-01 EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.2494E-01 FORCE CONVERGENCE VALUE = 3.277 CRITERION= 5.526 <<< CONVERGED MOMENT CONVERGENCE VALUE = 0.3322 CRITERION= 5.071 <<< CONVERGED DISP CONVERGENCE VALUE = 0.8120E-03 CRITERION= 0.2484E-01 <<< CONVERGED EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC = -0.8120E-03 >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION 3 *** LOAD STEP 1 SUBSTEP 8 COMPLETED. CUM ITER = 14 *** TIME = 0.317813 TIME INC = 0.100000 *** AUTO STEP TIME: NEXT TIME INC = 0.10000 UNCHANGED FORCE CONVERGENCE VALUE = 2522. CRITERION= 7.264 MOMENT CONVERGENCE VALUE = 157.6 CRITERION= 6.666 DISP CONVERGENCE VALUE = 0.3201 CRITERION= 0.3187E-01 EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.3201 FORCE CONVERGENCE VALUE = 802.8 CRITERION= 7.265 MOMENT CONVERGENCE VALUE = 48.60 CRITERION= 6.667 DISP CONVERGENCE VALUE = 0.1286 CRITERION= 0.3533E-01 EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1286 FORCE CONVERGENCE VALUE = 71.58 CRITERION= 7.265 MOMENT CONVERGENCE VALUE = 5.723 CRITERION= 6.667 <<< CONVERGED DISP CONVERGENCE VALUE = 0.4113E-01 CRITERION= 0.3557E-01 EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.4113E-01 FORCE CONVERGENCE VALUE = 4.570 CRITERION= 7.265 <<< CONVERGED MOMENT CONVERGENCE VALUE = 0.3269 CRITERION= 6.667 <<< CONVERGED DISP CONVERGENCE VALUE = 0.1397E-02 CRITERION= 0.3557E-01 <<< CONVERGED EQUIL ITER 4 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC = 0.1397E-02 >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION 4 *** LOAD STEP 1 SUBSTEP 9 COMPLETED. CUM ITER = 18 *** TIME = 0.417813 TIME INC = 0.100000 *** AUTO STEP TIME: NEXT TIME INC = 0.10000 UNCHANGED FORCE CONVERGENCE VALUE = 9178. CRITERION= 9.006 MOMENT CONVERGENCE VALUE = 777.1 CRITERION= 8.264 DISP CONVERGENCE VALUE = 0.8389 CRITERION= 0.6052E-01 EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.8389 FORCE CONVERGENCE VALUE = 3620. CRITERION= 9.008 MOMENT CONVERGENCE VALUE = 267.5 CRITERION= 8.266 DISP CONVERGENCE VALUE = 0.6188 CRITERION= 0.7166E-01 EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.6188 FORCE CONVERGENCE VALUE = 1032. CRITERION= 9.010 MOMENT CONVERGENCE VALUE = 89.59 CRITERION= 8.268 DISP CONVERGENCE VALUE = 1.023 CRITERION= 0.9582E-01 EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -1.023 FORCE CONVERGENCE VALUE = 3337. CRITERION= 9.011 MOMENT CONVERGENCE VALUE = 313.5 CRITERION= 8.269 DISP CONVERGENCE VALUE = 0.1755 CRITERION= 0.9586E-01 EQUIL ITER 4 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1755 FORCE CONVERGENCE VALUE = 142.2 CRITERION= 9.011 MOMENT CONVERGENCE VALUE = 44.23 CRITERION= 8.270 DISP CONVERGENCE VALUE = 0.3050 CRITERION= 0.9623E-01 EQUIL ITER 5 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.3050 FORCE CONVERGENCE VALUE = 246.8 CRITERION= 9.012 MOMENT CONVERGENCE VALUE = 18.13 CRITERION= 8.270 DISP CONVERGENCE VALUE = 0.2704 CRITERION= 0.9628E-01 EQUIL ITER 6 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.2704 FORCE CONVERGENCE VALUE = 243.5 CRITERION= 9.012 MOMENT CONVERGENCE VALUE = 17.49 CRITERION= 8.270 DISP CONVERGENCE VALUE = 0.9261 CRITERION= 0.9628E-01 EQUIL ITER 7 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.9261 FORCE CONVERGENCE VALUE = 2146. CRITERION= 10.59 MOMENT CONVERGENCE VALUE = 238.1 CRITERION= 9.720 >>> SOLUTION PATTERNS SHOW DIVERGENCE AT ITERATION = 8 *** LOAD STEP 1 SUBSTEP 10 NOT COMPLETED. CUM ITER = 26 *** BEGIN BISECTION NUMBER 1 NEW TIME INCREMENT= 0.45000E-01 FORCE CONVERGENCE VALUE = 2995. CRITERION= 8.048 MOMENT CONVERGENCE VALUE = 194.5 CRITERION= 7.386 DISP CONVERGENCE VALUE = 0.3766 CRITERION= 0.3557E-01 EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.3766 FORCE CONVERGENCE VALUE = 496.4 CRITERION= 8.049 MOMENT CONVERGENCE VALUE = 33.11 CRITERION= 7.386 DISP CONVERGENCE VALUE = 0.1569 CRITERION= 0.3743E-01 EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1569 FORCE CONVERGENCE VALUE = 105.3 CRITERION= 8.050 MOMENT CONVERGENCE VALUE = 7.260 CRITERION= 7.387 <<< CONVERGED DISP CONVERGENCE VALUE = 0.6500E-01 CRITERION= 0.3929E-01 EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.6500E-01 FORCE CONVERGENCE VALUE = 16.99 CRITERION= 8.050 MOMENT CONVERGENCE VALUE = 1.221 CRITERION= 7.387 <<< CONVERGED DISP CONVERGENCE VALUE = 0.1541E-01 CRITERION= 0.3939E-01 <<< CONVERGED EQUIL ITER 4 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.1541E-01 FORCE CONVERGENCE VALUE = 0.8279 CRITERION= 8.050 <<< CONVERGED MOMENT CONVERGENCE VALUE = 0.1052 CRITERION= 7.387 <<< CONVERGED >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION 4 *** LOAD STEP 1 SUBSTEP 10 COMPLETED. CUM ITER = 29 *** TIME = 0.462813 TIME INC = 0.450000E-01 *** AUTO STEP TIME: NEXT TIME INC = 0.45000E-01 UNCHANGED FORCE CONVERGENCE VALUE = 5962. CRITERION= 8.835 MOMENT CONVERGENCE VALUE = 543.9 CRITERION= 8.107 DISP CONVERGENCE VALUE = 0.6835 CRITERION= 0.5040E-01 EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.6835 FORCE CONVERGENCE VALUE = 1134. CRITERION= 8.835 MOMENT CONVERGENCE VALUE = 90.52 CRITERION= 8.108 DISP CONVERGENCE VALUE = 0.5647 CRITERION= 0.6684E-01 EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.5647 FORCE CONVERGENCE VALUE = 1111. CRITERION= 8.836 MOMENT CONVERGENCE VALUE = 74.43 CRITERION= 8.109 DISP CONVERGENCE VALUE = 0.1671 CRITERION= 0.7284E-01 EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.1671 FORCE CONVERGENCE VALUE = 105.0 CRITERION= 8.836 MOMENT CONVERGENCE VALUE = 9.946 CRITERION= 8.109 DISP CONVERGENCE VALUE = 0.7323E-01 CRITERION= 0.7417E-01 <<< CONVERGED EQUIL ITER 4 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.7323E-01 FORCE CONVERGENCE VALUE = 22.34 CRITERION= 8.836 MOMENT CONVERGENCE VALUE = 1.546 CRITERION= 8.109 <<< CONVERGED DISP CONVERGENCE VALUE = 0.4771E-02 CRITERION= 0.7422E-01 <<< CONVERGED EQUIL ITER 5 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.4771E-02 FORCE CONVERGENCE VALUE = 0.1063 CRITERION= 8.836 <<< CONVERGED MOMENT CONVERGENCE VALUE = 0.1221 CRITERION= 8.109 <<< CONVERGED >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION 5 *** LOAD STEP 1 SUBSTEP 11 COMPLETED. CUM ITER = 34 *** TIME = 0.507812 TIME INC = 0.450000E-01 *** AUTO TIME STEP: NEXT TIME INC = 0.67500E-01 INCREASED (FACTOR = 1.5000) FORCE CONVERGENCE VALUE = 0.3334E+05 CRITERION= 10.02 MOMENT CONVERGENCE VALUE = 7795. CRITERION= 9.195 DISP CONVERGENCE VALUE = 1.683 CRITERION= 0.8513E-01 EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 1.683 FORCE CONVERGENCE VALUE = 0.3672E+05 CRITERION= 10.02 MOMENT CONVERGENCE VALUE = 0.1468E+05 CRITERION= 9.198 DISP CONVERGENCE VALUE = 7.150 CRITERION= 0.2864 EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 7.150 FORCE CONVERGENCE VALUE = 0.1337E+06 CRITERION= 10.09 MOMENT CONVERGENCE VALUE = 0.6255E+06 CRITERION= 9.261 DISP CONVERGENCE VALUE = 380.7 CRITERION= 18.90 EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -380.7 FORCE CONVERGENCE VALUE = 0.4605E+07 CRITERION= 84.79 MOMENT CONVERGENCE VALUE = 0.2265E+08 CRITERION= 77.81 DISP CONVERGENCE VALUE = 0.1374E+05 CRITERION= 703.1 EQUIL ITER 4 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.1374E+05 *** ERROR *** CP = 0.000 TIME= 00:00:00 Element 17426 has excessive thickness change. *** ERROR *** CP = 0.000 TIME= 00:00:00 Element 2517 has excessive thickness change. *** LOAD STEP 1 SUBSTEP 12 NOT COMPLETED. CUM ITER = 39 *** BEGIN BISECTION NUMBER 1 NEW TIME INCREMENT= 0.23625E-01 FORCE CONVERGENCE VALUE = 7739. CRITERION= 9.250 MOMENT CONVERGENCE VALUE = 1071. CRITERION= 8.489 DISP CONVERGENCE VALUE = 0.3148 CRITERION= 0.7422E-01 EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.3148 FORCE CONVERGENCE VALUE = 521.2 CRITERION= 9.250 MOMENT CONVERGENCE VALUE = 168.1 CRITERION= 8.489 DISP CONVERGENCE VALUE = 3.185 CRITERION= 0.1758 EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 3.185 FORCE CONVERGENCE VALUE = 0.1925E+05 CRITERION= 9.252 MOMENT CONVERGENCE VALUE = 6530. CRITERION= 8.490 DISP CONVERGENCE VALUE = 2.477 CRITERION= 0.1758 EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 2.477 FORCE CONVERGENCE VALUE = 0.2903E+05 CRITERION= 9.255 MOMENT CONVERGENCE VALUE = 0.3408E+05 CRITERION= 8.493 DISP CONVERGENCE VALUE = 9.697 CRITERION= 0.5765 EQUIL ITER 4 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 9.697 FORCE CONVERGENCE VALUE = 0.5777E+06 CRITERION= 9.488 MOMENT CONVERGENCE VALUE = 0.2332E+07 CRITERION= 8.707 >>> SOLUTION PATTERNS SHOW DIVERGENCE AT ITERATION = 5 *** LOAD STEP 1 SUBSTEP 12 NOT COMPLETED. CUM ITER = 43 *** BEGIN BISECTION NUMBER 2 NEW TIME INCREMENT= 0.10631E-01 FORCE CONVERGENCE VALUE = 2830. CRITERION= 9.023 MOMENT CONVERGENCE VALUE = 316.6 CRITERION= 8.280 DISP CONVERGENCE VALUE = 0.1987 CRITERION= 0.7422E-01 EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1987 FORCE CONVERGENCE VALUE = 150.4 CRITERION= 9.023 MOMENT CONVERGENCE VALUE = 40.22 CRITERION= 8.280 DISP CONVERGENCE VALUE = 0.2897 CRITERION= 0.7422E-01 EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.2897 FORCE CONVERGENCE VALUE = 259.6 CRITERION= 9.023 MOMENT CONVERGENCE VALUE = 18.92 CRITERION= 8.280 DISP CONVERGENCE VALUE = 0.4809 CRITERION= 0.7422E-01 EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.4809 FORCE CONVERGENCE VALUE = 690.2 CRITERION= 9.023 MOMENT CONVERGENCE VALUE = 46.30 CRITERION= 8.280 DISP CONVERGENCE VALUE = 1.755 CRITERION= 0.1271 EQUIL ITER 4 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 1.755 FORCE CONVERGENCE VALUE = 6684. CRITERION= 9.024 MOMENT CONVERGENCE VALUE = 973.2 CRITERION= 8.281 >>> SOLUTION PATTERNS SHOW DIVERGENCE AT ITERATION = 5 *** LOAD STEP 1 SUBSTEP 12 NOT COMPLETED. CUM ITER = 47 *** BEGIN BISECTION NUMBER 3 NEW TIME INCREMENT= 0.47841E-02 FORCE CONVERGENCE VALUE = 1140. CRITERION= 8.920 MOMENT CONVERGENCE VALUE = 114.9 CRITERION= 8.186 DISP CONVERGENCE VALUE = 0.1121 CRITERION= 0.7422E-01 EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1121 FORCE CONVERGENCE VALUE = 42.68 CRITERION= 8.920 MOMENT CONVERGENCE VALUE = 8.289 CRITERION= 8.186 DISP CONVERGENCE VALUE = 0.7531E-01 CRITERION= 0.7422E-01 EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.7531E-01 FORCE CONVERGENCE VALUE = 16.17 CRITERION= 8.920 MOMENT CONVERGENCE VALUE = 1.451 CRITERION= 8.186 <<< CONVERGED DISP CONVERGENCE VALUE = 0.1739E-01 CRITERION= 0.7422E-01 <<< CONVERGED EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1739E-01 FORCE CONVERGENCE VALUE = 1.085 CRITERION= 8.920 <<< CONVERGED MOMENT CONVERGENCE VALUE = 0.2552 CRITERION= 8.186 <<< CONVERGED >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION 3 *** LOAD STEP 1 SUBSTEP 12 COMPLETED. CUM ITER = 49 *** TIME = 0.512597 TIME INC = 0.478406E-02 *** AUTO STEP TIME: NEXT TIME INC = 0.47841E-02 UNCHANGED FORCE CONVERGENCE VALUE = 437.0 CRITERION= 9.004 MOMENT CONVERGENCE VALUE = 32.47 CRITERION= 8.263 DISP CONVERGENCE VALUE = 0.1258 CRITERION= 0.7422E-01 EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1258 FORCE CONVERGENCE VALUE = 56.91 CRITERION= 9.004 MOMENT CONVERGENCE VALUE = 5.574 CRITERION= 8.263 <<< CONVERGED DISP CONVERGENCE VALUE = 1.113 CRITERION= 0.7422E-01 EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -1.113 FORCE CONVERGENCE VALUE = 4126. CRITERION= 9.004 MOMENT CONVERGENCE VALUE = 575.1 CRITERION= 8.263 DISP CONVERGENCE VALUE = 0.3482 CRITERION= 0.7422E-01 EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.3482 FORCE CONVERGENCE VALUE = 202.8 CRITERION= 9.004 MOMENT CONVERGENCE VALUE = 90.86 CRITERION= 8.262 DISP CONVERGENCE VALUE = 0.3248 CRITERION= 0.7422E-01 EQUIL ITER 4 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.3248 FORCE CONVERGENCE VALUE = 703.1 CRITERION= 9.004 MOMENT CONVERGENCE VALUE = 63.27 CRITERION= 8.262 DISP CONVERGENCE VALUE = 0.1437 CRITERION= 0.7422E-01 EQUIL ITER 5 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1437 FORCE CONVERGENCE VALUE = 67.13 CRITERION= 9.004 MOMENT CONVERGENCE VALUE = 12.22 CRITERION= 8.263 DISP CONVERGENCE VALUE = 0.2515 CRITERION= 0.7422E-01 EQUIL ITER 6 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.2515 FORCE CONVERGENCE VALUE = 225.4 CRITERION= 9.004 MOMENT CONVERGENCE VALUE = 17.31 CRITERION= 8.263 DISP CONVERGENCE VALUE = 0.1216 CRITERION= 0.7422E-01 EQUIL ITER 7 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1216 FORCE CONVERGENCE VALUE = 57.19 CRITERION= 10.58 MOMENT CONVERGENCE VALUE = 5.638 CRITERION= 9.712 <<< CONVERGED DISP CONVERGENCE VALUE = 1.048 CRITERION= 0.7422E-01 EQUIL ITER 8 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 1.048 FORCE CONVERGENCE VALUE = 4350. CRITERION= 10.80 MOMENT CONVERGENCE VALUE = 481.8 CRITERION= 9.911 >>> SOLUTION PATTERNS SHOW DIVERGENCE AT ITERATION = 9 *** LOAD STEP 1 SUBSTEP 13 NOT COMPLETED. CUM ITER = 58 *** BEGIN BISECTION NUMBER 1 NEW TIME INCREMENT= 0.21528E-02 FORCE CONVERGENCE VALUE = 143.3 CRITERION= 8.958 MOMENT CONVERGENCE VALUE = 9.974 CRITERION= 8.220 DISP CONVERGENCE VALUE = 0.4821E-01 CRITERION= 0.7422E-01 <<< CONVERGED EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.4821E-01 FORCE CONVERGENCE VALUE = 10.86 CRITERION= 8.958 MOMENT CONVERGENCE VALUE = 1.356 CRITERION= 8.220 <<< CONVERGED DISP CONVERGENCE VALUE = 0.7755E-01 CRITERION= 0.7422E-01 EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.7755E-01 FORCE CONVERGENCE VALUE = 22.42 CRITERION= 8.958 MOMENT CONVERGENCE VALUE = 1.937 CRITERION= 8.221 <<< CONVERGED DISP CONVERGENCE VALUE = 0.5666E-01 CRITERION= 0.7422E-01 <<< CONVERGED EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.5666E-01 FORCE CONVERGENCE VALUE = 13.12 CRITERION= 8.958 MOMENT CONVERGENCE VALUE = 1.281 CRITERION= 8.221 <<< CONVERGED DISP CONVERGENCE VALUE = 0.1207 CRITERION= 0.7422E-01 EQUIL ITER 4 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.1207 FORCE CONVERGENCE VALUE = 55.45 CRITERION= 8.958 MOMENT CONVERGENCE VALUE = 4.396 CRITERION= 8.221 <<< CONVERGED >>> SOLUTION PATTERNS SHOW DIVERGENCE AT ITERATION = 5 *** LOAD STEP 1 SUBSTEP 13 NOT COMPLETED. CUM ITER = 62 *** BEGIN BISECTION NUMBER 2 NEW TIME INCREMENT= 0.96877E-03 FORCE CONVERGENCE VALUE = 54.02 CRITERION= 8.937 MOMENT CONVERGENCE VALUE = 3.686 CRITERION= 8.201 DISP CONVERGENCE VALUE = 0.2413E-01 CRITERION= 0.7422E-01 <<< CONVERGED EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.2413E-01 FORCE CONVERGENCE VALUE = 2.383 CRITERION= 8.937 <<< CONVERGED MOMENT CONVERGENCE VALUE = 0.4496 CRITERION= 8.201 <<< CONVERGED >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION 1 *** LOAD STEP 1 SUBSTEP 13 COMPLETED. CUM ITER = 62 *** TIME = 0.513565 TIME INC = 0.968773E-03 *** AUTO STEP TIME: NEXT TIME INC = 0.96877E-03 UNCHANGED FORCE CONVERGENCE VALUE = 39.63 CRITERION= 8.954 MOMENT CONVERGENCE VALUE = 2.841 CRITERION= 8.217 DISP CONVERGENCE VALUE = 0.3882E-01 CRITERION= 0.7422E-01 <<< CONVERGED EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.3882E-01 FORCE CONVERGENCE VALUE = 6.308 CRITERION= 8.954 <<< CONVERGED MOMENT CONVERGENCE VALUE = 0.7885 CRITERION= 8.217 <<< CONVERGED >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION 1 *** LOAD STEP 1 SUBSTEP 14 COMPLETED. CUM ITER = 63 *** TIME = 0.514534 TIME INC = 0.968773E-03 *** AUTO TIME STEP: NEXT TIME INC = 0.14532E-02 INCREASED (FACTOR = 1.5000) FORCE CONVERGENCE VALUE = 177.7 CRITERION= 8.980 MOMENT CONVERGENCE VALUE = 13.17 CRITERION= 8.240 DISP CONVERGENCE VALUE = 0.3462 CRITERION= 0.7422E-01 EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.3462 FORCE CONVERGENCE VALUE = 348.9 CRITERION= 8.980 MOMENT CONVERGENCE VALUE = 22.75 CRITERION= 8.241 DISP CONVERGENCE VALUE = 1.482 CRITERION= 0.7422E-01 EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -1.482 FORCE CONVERGENCE VALUE = 5235. CRITERION= 8.980 MOMENT CONVERGENCE VALUE = 761.6 CRITERION= 8.240 DISP CONVERGENCE VALUE = 0.3994 CRITERION= 0.7422E-01 EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.3994 FORCE CONVERGENCE VALUE = 250.6 CRITERION= 8.979 MOMENT CONVERGENCE VALUE = 109.2 CRITERION= 8.240 DISP CONVERGENCE VALUE = 0.2678 CRITERION= 0.7422E-01 EQUIL ITER 4 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.2678 FORCE CONVERGENCE VALUE = 374.0 CRITERION= 8.979 MOMENT CONVERGENCE VALUE = 40.17 CRITERION= 8.240 DISP CONVERGENCE VALUE = 0.1573 CRITERION= 0.7422E-01 EQUIL ITER 5 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1573 FORCE CONVERGENCE VALUE = 85.54 CRITERION= 8.980 MOMENT CONVERGENCE VALUE = 11.95 CRITERION= 8.240 DISP CONVERGENCE VALUE = 0.1360 CRITERION= 0.7422E-01 EQUIL ITER 6 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1360 FORCE CONVERGENCE VALUE = 86.90 CRITERION= 8.980 MOMENT CONVERGENCE VALUE = 7.445 CRITERION= 8.240 <<< CONVERGED DISP CONVERGENCE VALUE = 0.1102 CRITERION= 0.7422E-01 EQUIL ITER 7 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1102 FORCE CONVERGENCE VALUE = 53.46 CRITERION= 10.55 MOMENT CONVERGENCE VALUE = 4.531 CRITERION= 9.686 <<< CONVERGED DISP CONVERGENCE VALUE = 0.2589 CRITERION= 0.7422E-01 EQUIL ITER 8 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.2589 FORCE CONVERGENCE VALUE = 268.2 CRITERION= 10.77 MOMENT CONVERGENCE VALUE = 19.45 CRITERION= 9.884 >>> SOLUTION PATTERNS SHOW DIVERGENCE AT ITERATION = 9 *** LOAD STEP 1 SUBSTEP 15 NOT COMPLETED. CUM ITER = 72 *** BEGIN BISECTION NUMBER 1 NEW TIME INCREMENT= 0.65392E-03 FORCE CONVERGENCE VALUE = 58.54 CRITERION= 8.966 MOMENT CONVERGENCE VALUE = 4.289 CRITERION= 8.228 DISP CONVERGENCE VALUE = 0.1294 CRITERION= 0.7422E-01 EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1294 FORCE CONVERGENCE VALUE = 61.77 CRITERION= 8.966 MOMENT CONVERGENCE VALUE = 4.735 CRITERION= 8.228 <<< CONVERGED DISP CONVERGENCE VALUE = 0.2145 CRITERION= 0.7422E-01 EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.2145 FORCE CONVERGENCE VALUE = 143.2 CRITERION= 8.966 MOMENT CONVERGENCE VALUE = 10.70 CRITERION= 8.228 DISP CONVERGENCE VALUE = 0.6552E-01 CRITERION= 0.7422E-01 <<< CONVERGED EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.6552E-01 FORCE CONVERGENCE VALUE = 10.25 CRITERION= 8.966 MOMENT CONVERGENCE VALUE = 1.454 CRITERION= 8.228 <<< CONVERGED DISP CONVERGENCE VALUE = 0.2108 CRITERION= 0.7422E-01 EQUIL ITER 4 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.2108 FORCE CONVERGENCE VALUE = 196.7 CRITERION= 8.966 MOMENT CONVERGENCE VALUE = 14.50 CRITERION= 8.228 >>> SOLUTION PATTERNS SHOW DIVERGENCE AT ITERATION = 5 *** LOAD STEP 1 SUBSTEP 15 NOT COMPLETED. CUM ITER = 76 *** BEGIN BISECTION NUMBER 2 NEW TIME INCREMENT= 0.29426E-03 FORCE CONVERGENCE VALUE = 24.66 CRITERION= 8.959 MOMENT CONVERGENCE VALUE = 1.900 CRITERION= 8.222 DISP CONVERGENCE VALUE = 0.6161E-01 CRITERION= 0.7422E-01 <<< CONVERGED EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.6161E-01 FORCE CONVERGENCE VALUE = 16.81 CRITERION= 8.959 MOMENT CONVERGENCE VALUE = 1.550 CRITERION= 8.222 <<< CONVERGED DISP CONVERGENCE VALUE = 0.3000 CRITERION= 0.7422E-01 EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.3000 FORCE CONVERGENCE VALUE = 345.4 CRITERION= 8.959 MOMENT CONVERGENCE VALUE = 28.45 CRITERION= 8.222 DISP CONVERGENCE VALUE = 0.9271E-01 CRITERION= 0.7422E-01 EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.9271E-01 FORCE CONVERGENCE VALUE = 21.13 CRITERION= 8.959 MOMENT CONVERGENCE VALUE = 3.953 CRITERION= 8.222 <<< CONVERGED DISP CONVERGENCE VALUE = 0.1182 CRITERION= 0.7422E-01 EQUIL ITER 4 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1182 FORCE CONVERGENCE VALUE = 53.95 CRITERION= 8.959 MOMENT CONVERGENCE VALUE = 4.324 CRITERION= 8.222 <<< CONVERGED DISP CONVERGENCE VALUE = 0.5180E-01 CRITERION= 0.7422E-01 <<< CONVERGED EQUIL ITER 5 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.5180E-01 FORCE CONVERGENCE VALUE = 10.69 CRITERION= 8.959 MOMENT CONVERGENCE VALUE = 1.181 CRITERION= 8.222 <<< CONVERGED DISP CONVERGENCE VALUE = 0.7971E-01 CRITERION= 0.7422E-01 EQUIL ITER 6 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.7971E-01 FORCE CONVERGENCE VALUE = 27.32 CRITERION= 8.959 MOMENT CONVERGENCE VALUE = 2.305 CRITERION= 8.222 <<< CONVERGED DISP CONVERGENCE VALUE = 0.2621 CRITERION= 0.7422E-01 EQUIL ITER 7 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.2621 FORCE CONVERGENCE VALUE = 255.6 CRITERION= 10.53 MOMENT CONVERGENCE VALUE = 20.50 CRITERION= 9.664 >>> SOLUTION PATTERNS SHOW DIVERGENCE AT ITERATION = 8 *** LOAD STEP 1 SUBSTEP 15 NOT COMPLETED. CUM ITER = 83 *** BEGIN BISECTION NUMBER 3 NEW TIME INCREMENT= 0.10000E-03 FORCE CONVERGENCE VALUE = 11.54 CRITERION= 8.956 MOMENT CONVERGENCE VALUE = 1.060 CRITERION= 8.219 DISP CONVERGENCE VALUE = 0.4012E-01 CRITERION= 0.7422E-01 <<< CONVERGED EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.4012E-01 FORCE CONVERGENCE VALUE = 6.714 CRITERION= 8.956 <<< CONVERGED MOMENT CONVERGENCE VALUE = 0.7801 CRITERION= 8.219 <<< CONVERGED >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION 1 *** LOAD STEP 1 SUBSTEP 15 COMPLETED. CUM ITER = 83 *** TIME = 0.514634 TIME INC = 0.100000E-03 *** AUTO STEP TIME: NEXT TIME INC = 0.10000E-03 UNCHANGED FORCE CONVERGENCE VALUE = 28.39 CRITERION= 8.958 MOMENT CONVERGENCE VALUE = 2.158 CRITERION= 8.220 DISP CONVERGENCE VALUE = 0.5154 CRITERION= 0.7422E-01 EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.5154 FORCE CONVERGENCE VALUE = 996.2 CRITERION= 8.958 MOMENT CONVERGENCE VALUE = 93.89 CRITERION= 8.220 DISP CONVERGENCE VALUE = 0.1513 CRITERION= 0.7422E-01 EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1513 FORCE CONVERGENCE VALUE = 46.69 CRITERION= 8.958 MOMENT CONVERGENCE VALUE = 14.29 CRITERION= 8.220 DISP CONVERGENCE VALUE = 0.1749 CRITERION= 0.7422E-01 EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1749 FORCE CONVERGENCE VALUE = 129.2 CRITERION= 8.958 MOMENT CONVERGENCE VALUE = 10.61 CRITERION= 8.220 DISP CONVERGENCE VALUE = 0.6899E-01 CRITERION= 0.7422E-01 <<< CONVERGED EQUIL ITER 4 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.6899E-01 FORCE CONVERGENCE VALUE = 19.35 CRITERION= 8.958 MOMENT CONVERGENCE VALUE = 2.207 CRITERION= 8.220 <<< CONVERGED DISP CONVERGENCE VALUE = 0.8524E-01 CRITERION= 0.7422E-01 EQUIL ITER 5 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.8524E-01 FORCE CONVERGENCE VALUE = 27.44 CRITERION= 8.958 MOMENT CONVERGENCE VALUE = 2.327 CRITERION= 8.220 <<< CONVERGED DISP CONVERGENCE VALUE = 0.4444E-01 CRITERION= 0.7422E-01 <<< CONVERGED EQUIL ITER 6 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.4444E-01 FORCE CONVERGENCE VALUE = 8.756 CRITERION= 8.958 <<< CONVERGED MOMENT CONVERGENCE VALUE = 0.9666 CRITERION= 8.220 <<< CONVERGED >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION 6 *** LOAD STEP 1 SUBSTEP 16 COMPLETED. CUM ITER = 89 *** TIME = 0.514734 TIME INC = 0.100000E-03 *** AUTO STEP TIME: NEXT TIME INC = 0.10000E-03 UNCHANGED FORCE CONVERGENCE VALUE = 10.90 CRITERION= 8.960 MOMENT CONVERGENCE VALUE = 1.171 CRITERION= 8.222 DISP CONVERGENCE VALUE = 0.1377 CRITERION= 0.7422E-01 EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1377 FORCE CONVERGENCE VALUE = 82.42 CRITERION= 8.960 MOMENT CONVERGENCE VALUE = 6.212 CRITERION= 8.222 <<< CONVERGED DISP CONVERGENCE VALUE = 0.2067 CRITERION= 0.7422E-01 EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.2067 FORCE CONVERGENCE VALUE = 135.0 CRITERION= 8.960 MOMENT CONVERGENCE VALUE = 10.00 CRITERION= 8.222 DISP CONVERGENCE VALUE = 0.4928E-01 CRITERION= 0.7422E-01 <<< CONVERGED EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.4928E-01 FORCE CONVERGENCE VALUE = 5.373 CRITERION= 8.960 <<< CONVERGED MOMENT CONVERGENCE VALUE = 0.8629 CRITERION= 8.222 <<< CONVERGED >>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION 3 *** LOAD STEP 1 SUBSTEP 17 COMPLETED. CUM ITER = 92 *** TIME = 0.514834 TIME INC = 0.100000E-03 *** AUTO TIME STEP: NEXT TIME INC = 0.15000E-03 INCREASED (FACTOR = 1.5000) FORCE CONVERGENCE VALUE = 13.64 CRITERION= 8.962 MOMENT CONVERGENCE VALUE = 2.192 CRITERION= 8.224 DISP CONVERGENCE VALUE = 0.1057 CRITERION= 0.7422E-01 EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1057 FORCE CONVERGENCE VALUE = 46.42 CRITERION= 8.962 MOMENT CONVERGENCE VALUE = 3.675 CRITERION= 8.224 <<< CONVERGED DISP CONVERGENCE VALUE = 0.9430 CRITERION= 0.7422E-01 EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.9430 FORCE CONVERGENCE VALUE = 3204. CRITERION= 8.962 MOMENT CONVERGENCE VALUE = 398.8 CRITERION= 8.224 DISP CONVERGENCE VALUE = 0.2859 CRITERION= 0.7422E-01 EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.2859 FORCE CONVERGENCE VALUE = 146.8 CRITERION= 8.962 MOMENT CONVERGENCE VALUE = 61.78 CRITERION= 8.224 DISP CONVERGENCE VALUE = 0.2422 CRITERION= 0.7422E-01 EQUIL ITER 4 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.2422 FORCE CONVERGENCE VALUE = 455.6 CRITERION= 8.962 MOMENT CONVERGENCE VALUE = 40.41 CRITERION= 8.224 DISP CONVERGENCE VALUE = 0.1148 CRITERION= 0.7422E-01 EQUIL ITER 5 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1148 FORCE CONVERGENCE VALUE = 49.29 CRITERION= 8.962 MOMENT CONVERGENCE VALUE = 7.475 CRITERION= 8.224 <<< CONVERGED DISP CONVERGENCE VALUE = 0.1648 CRITERION= 0.7422E-01 EQUIL ITER 6 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1648 FORCE CONVERGENCE VALUE = 96.52 CRITERION= 8.962 MOMENT CONVERGENCE VALUE = 7.504 CRITERION= 8.224 <<< CONVERGED DISP CONVERGENCE VALUE = 0.6973E-01 CRITERION= 0.7422E-01 <<< CONVERGED EQUIL ITER 7 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.6973E-01 FORCE CONVERGENCE VALUE = 21.02 CRITERION= 10.53 MOMENT CONVERGENCE VALUE = 2.113 CRITERION= 9.667 <<< CONVERGED DISP CONVERGENCE VALUE = 0.9208E-01 CRITERION= 0.7422E-01 EQUIL ITER 8 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.9208E-01 FORCE CONVERGENCE VALUE = 32.98 CRITERION= 10.75 MOMENT CONVERGENCE VALUE = 2.723 CRITERION= 9.864 <<< CONVERGED DISP CONVERGENCE VALUE = 0.1312 CRITERION= 0.7422E-01 EQUIL ITER 9 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1312 FORCE CONVERGENCE VALUE = 67.80 CRITERION= 10.97 MOMENT CONVERGENCE VALUE = 5.182 CRITERION= 10.07 <<< CONVERGED >>> SOLUTION PATTERNS SHOW DIVERGENCE AT ITERATION = 10 *** LOAD STEP 1 SUBSTEP 18 NOT COMPLETED. CUM ITER = 102 *** BEGIN BISECTION NUMBER 1 NEW TIME INCREMENT= 0.10000E-03 FORCE CONVERGENCE VALUE = 10.10 CRITERION= 8.961 MOMENT CONVERGENCE VALUE = 1.683 CRITERION= 8.223 DISP CONVERGENCE VALUE = 0.1036 CRITERION= 0.7422E-01 EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1036 FORCE CONVERGENCE VALUE = 44.92 CRITERION= 8.961 MOMENT CONVERGENCE VALUE = 3.556 CRITERION= 8.224 <<< CONVERGED DISP CONVERGENCE VALUE = 0.3994 CRITERION= 0.7422E-01 EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.3994 FORCE CONVERGENCE VALUE = 577.0 CRITERION= 8.961 MOMENT CONVERGENCE VALUE = 49.52 CRITERION= 8.223 DISP CONVERGENCE VALUE = 0.1151 CRITERION= 0.7422E-01 EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1151 FORCE CONVERGENCE VALUE = 28.35 CRITERION= 8.961 MOMENT CONVERGENCE VALUE = 6.978 CRITERION= 8.223 <<< CONVERGED DISP CONVERGENCE VALUE = 0.1348 CRITERION= 0.7422E-01 EQUIL ITER 4 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1348 FORCE CONVERGENCE VALUE = 74.52 CRITERION= 8.961 MOMENT CONVERGENCE VALUE = 6.026 CRITERION= 8.223 <<< CONVERGED DISP CONVERGENCE VALUE = 0.6109E-01 CRITERION= 0.7422E-01 <<< CONVERGED EQUIL ITER 5 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.6109E-01 FORCE CONVERGENCE VALUE = 14.38 CRITERION= 8.961 MOMENT CONVERGENCE VALUE = 1.547 CRITERION= 8.223 <<< CONVERGED DISP CONVERGENCE VALUE = 0.8651E-01 CRITERION= 0.7422E-01 EQUIL ITER 6 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.8651E-01 FORCE CONVERGENCE VALUE = 31.28 CRITERION= 8.961 MOMENT CONVERGENCE VALUE = 2.604 CRITERION= 8.223 <<< CONVERGED DISP CONVERGENCE VALUE = 0.9241 CRITERION= 0.7422E-01 EQUIL ITER 7 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.9241 FORCE CONVERGENCE VALUE = 3187. CRITERION= 10.53 MOMENT CONVERGENCE VALUE = 317.2 CRITERION= 9.666 DISP CONVERGENCE VALUE = 0.3616 CRITERION= 0.7422E-01 EQUIL ITER 8 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.3616 FORCE CONVERGENCE VALUE = 279.6 CRITERION= 10.75 MOMENT CONVERGENCE VALUE = 45.13 CRITERION= 9.864 DISP CONVERGENCE VALUE = 1.388 CRITERION= 0.1293 EQUIL ITER 9 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 1.388 FORCE CONVERGENCE VALUE = 6388. CRITERION= 10.97 MOMENT CONVERGENCE VALUE = 901.9 CRITERION= 10.07 DISP CONVERGENCE VALUE = 0.2434 CRITERION= 0.1293 EQUIL ITER 10 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.2434 FORCE CONVERGENCE VALUE = 397.3 CRITERION= 11.19 MOMENT CONVERGENCE VALUE = 150.2 CRITERION= 10.27 DISP CONVERGENCE VALUE = 0.8643 CRITERION= 0.1293 EQUIL ITER 11 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.8643 FORCE CONVERGENCE VALUE = 1849. CRITERION= 11.42 MOMENT CONVERGENCE VALUE = 175.5 CRITERION= 10.48 DISP CONVERGENCE VALUE = 0.1396 CRITERION= 0.1293 EQUIL ITER 12 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.1396 FORCE CONVERGENCE VALUE = 84.71 CRITERION= 11.66 MOMENT CONVERGENCE VALUE = 32.81 CRITERION= 10.70 DISP CONVERGENCE VALUE = 0.2072 CRITERION= 0.1293 EQUIL ITER 13 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.2072 FORCE CONVERGENCE VALUE = 103.4 CRITERION= 11.89 MOMENT CONVERGENCE VALUE = 8.223 CRITERION= 10.91 <<< CONVERGED DISP CONVERGENCE VALUE = 0.1151 CRITERION= 0.1293 <<< CONVERGED EQUIL ITER 14 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.1151 FORCE CONVERGENCE VALUE = 29.64 CRITERION= 12.14 MOMENT CONVERGENCE VALUE = 2.837 CRITERION= 11.14 <<< CONVERGED DISP CONVERGENCE VALUE = 0.7430E-01 CRITERION= 0.1293 <<< CONVERGED EQUIL ITER 15 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -0.7430E-01 FORCE CONVERGENCE VALUE = 12.61 CRITERION= 12.38 MOMENT CONVERGENCE VALUE = 1.019 CRITERION= 11.36 <<< CONVERGED *** WARNING *** CP = 0.000 TIME= 00:00:00 Solution not converged at time 0.514934108 (load step 1 substep 18). Run continued at user request. *** LOAD STEP 1 SUBSTEP 18 COMPLETED. CUM ITER = 116 *** TIME = 0.514934 TIME INC = 0.100000E-03 *** MAX PLASTIC STRAIN STEP = 0.1223E-04 CRITERION = 0.1500 *** AUTO STEP TIME: NEXT TIME INC = 0.10000E-03 UNCHANGED FORCE CONVERGENCE VALUE = 0.1381E+06 CRITERION= 8.966 MOMENT CONVERGENCE VALUE = 0.2126E+07 CRITERION= 8.228 DISP CONVERGENCE VALUE = 38.66 CRITERION= 1.929 EQUIL ITER 1 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= -38.66 FORCE CONVERGENCE VALUE = 0.1716E+07 CRITERION= 10.01 MOMENT CONVERGENCE VALUE = 0.1078E+08 CRITERION= 9.188 DISP CONVERGENCE VALUE = 4183. CRITERION= 209.2 EQUIL ITER 2 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 4183. FORCE CONVERGENCE VALUE = 0.1094E+08 CRITERION= 8790. MOMENT CONVERGENCE VALUE = 0.6503E+08 CRITERION= 8067. DISP CONVERGENCE VALUE = 0.1526E+06 CRITERION= 7739. EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.1934E+06 *** ERROR *** CP = 0.000 TIME= 00:00:00 Element 19905 has excessive thickness change. *** ERROR *** CP = 0.000 TIME= 00:00:00 Element 3389 has excessive thickness change. *** ERROR *** CP = 0.000 TIME= 00:00:00 Element 0 (type = 1, SHELL281) (and maybe other elements) has become highly distorted. Excessive distortion of elements is usually a symptom indicating the need for corrective action elsewhere. Try incrementing the load more slowly (increase the number of substeps or decrease the time step size). You may need to improve your mesh to obtain elements with better aspect ratios. Also consider the behavior of materials, contact pairs, and/or constraint equations. Please rule out other root causes of this failure before attempting rezoning or nonlinear adaptive solutions. If this message appears in the first iteration of first substep, be sure to perform element shape checking. *** WARNING *** CP = 0.000 TIME= 00:00:00 The unconverged solution (identified as time 1 substep 999999) is output for analysis debug purposes. Results should not be used for any other purpose. R E S T A R T I N F O R M A T I O N REASON FOR TERMINATION. . . . . . . . . .ERROR IN ELEMENT FORMULATION FILES NEEDED FOR RESTARTING . . . . . . . buckling0.Rnnn buckling.ldhi buckling.rdb TIME OF LAST SOLUTION . . . . . . . . . . 0.51493 TIME AT START OF THE LOAD STEP . . . . 0.0000 TIME AT END OF THE LOAD STEP . . . . . 1.0000 ALL CURRENT MAPDL DATA WRITTEN TO FILE NAME= FOR POSSIBLE RESUME FROM THIS POINT ***** ROUTINE COMPLETED ***** CP = 0.000 End nonlinear static analysis on imperfect geometry Post-buckling analysis ---------------------- An unconverged solution of the nonlinear static analysis could mean that buckling has occurred. In this example, the change in time (or load) increment, and displacement value, occurs between substeps 10 and 11, which corresponds to TIME = 0.51781 and TIME = 0.53806 and to a pressure between 0.124 MPa and 0.129 MPa. It is therefore very likely that buckling occurred at this time; to be sure, the analysis is continued. The goal is to verify the assessment made at this stage by obtaining the load-displacement behavior over a larger range. Because the post-buckling state is unstable, special techniques are necessary to compensate - in this case, nonlinear stabilization is used. .. code-block:: python print('Begin post-buckling analysis') mapdl.slashsolu() # Restart analysis with stabilization mapdl.antype("static", "restart", 1, 10) mapdl.nsubst(100, 50000, 10) mapdl.rescontrol("define", "last") mapdl.stabilize("constant", "energy", 0.000145) # Use energy option output = mapdl.solve() mapdl.finish() print('End of post-buckling analysis run') Postprocess buckling analysis in POST1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. code-block:: python print('Begin POST1 postprocessing of post-buckling analysis') mapdl.post1() mapdl.set("last") mapdl.post_processing.plot_nodal_displacement("NORM", smooth_shading=True) mapdl.post_processing.plot_nodal_eqv_stress() mapdl.finish() print('End POST1 postprocessing of post-buckling analysis') .. rst-class:: sphx-glr-horizontal * .. image-sg:: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_005.png :alt: 21 example technology showcase buckling :srcset: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_005.png :class: sphx-glr-multi-img * .. image-sg:: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_006.png :alt: 21 example technology showcase buckling :srcset: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_006.png :class: sphx-glr-multi-img Postprocess buckling analysis in POST26 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. code-block:: python print('Begin POST26 postprocessing of post-buckling analysis') mapdl.post26() mapdl.numvar(100) # allow storage for 100 variables mapdl.enersol(13, "sene") # store stiffness energy mapdl.enersol(14, "sten") # store artificial stabilization energy # time history plot of stiffness and stabilization energies mapdl.show("png") mapdl.plvar(13, 14) mapdl.show("close") # pressure versus axial shortening for some nodes under the upper ring mapdl.nsol(2, 67319, "U", "Z", "UZ1") mapdl.prod( ir=3, ia=2, ib="", ic="", name="strain1", facta="", factb="", factc=-1 / 431.8 ) mapdl.prod(ir=12, ia=1, ib="", ic="", name="Load", facta="", factb="", factc=0.24) mapdl.xvar(3) mapdl.show("png") mapdl.xrange(0.01) mapdl.yrange(0.24) mapdl.axlab("X", "Axial Shortening") mapdl.axlab("Y", "Applied Pressure ") mapdl.plvar(12) mapdl.show("close") mapdl.xvar(3) mapdl.show("png") mapdl.xrange(0.002) mapdl.yrange(1) mapdl.axlab("X", "Axial Shortening") mapdl.axlab("Y", "Time") mapdl.plvar(1) mapdl.show("png") mapdl.show("close") # pressure versus radial displacement for the node with max. deformation mapdl.nsol(6, 65269, "U", "Y", "UY_1") mapdl.prod(ir=7, ia=6, ib=6, ic="", name="UY2_1") mapdl.nsol(8, 65269, "U", "X", "UX_1") mapdl.prod(ir=9, ia=8, ib=8, ic="", name="UX2_1") mapdl.add(10, 7, 9, "sum") mapdl.sqrt(ir=11, ia=10, name="Urad") mapdl.xvar(11) mapdl.show("png") mapdl.xrange(4) mapdl.yrange(0.24) mapdl.axlab("X", "Radial Displacement") mapdl.axlab("Y", "Applied Pressure") mapdl.plvar(12) mapdl.show("png") mapdl.show("close") mapdl.finish() print('End POST26 postprocessing of post-buckling analysis') .. rst-class:: sphx-glr-horizontal * .. image-sg:: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_007.png :alt: 21 example technology showcase buckling :srcset: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_007.png :class: sphx-glr-multi-img * .. image-sg:: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_008.png :alt: 21 example technology showcase buckling :srcset: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_008.png :class: sphx-glr-multi-img * .. image-sg:: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_009.png :alt: 21 example technology showcase buckling :srcset: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_009.png :class: sphx-glr-multi-img * .. image-sg:: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_010.png :alt: 21 example technology showcase buckling :srcset: /technology_showcase_examples/techdemo-21/images/sphx_glr_21-example-technology-showcase-buckling_010.png :class: sphx-glr-multi-img Exit MAPDL ---------- Exit MAPDL instance. .. code-block:: python mapdl.exit() print("Exited MAPDL") .. rst-class:: sphx-glr-script-out .. code-block:: none Exited MAPDL